Early Journal Content on JSTOR, Free to Anyone in the World

This article is one of nearly 500,000 scholarly works digitized and made freely available to everyone in the world by JSTOR.

Known as the Early Journal Content, this set of works include research articles, news, letters, and other writings published in more than 200 of the oldest leading academic journals. The works date from the mid-seventeenth to the early twentieth centuries.

We encourage people to read and share the Early Journal Content openly and to tell others that this resource exists. People may post this content online or redistribute in any way for non-commercial purposes.

Read more about Early Journal Content at http://about.jstor.org/participate-jstor/individuals/early-journal-content.

JSTOR is a digital library of academic journals, books, and primary source objects. JSTOR helps people discover, use, and build upon a wide range of content through a powerful research and teaching platform, and preserves this content for future generations. JSTOR is part of ITHAKA, a not-for-profit organization that also includes Ithaka S+R and Portico. For more information about JSTOR, please contact support@jstor.org.

No. XXXVI.

Memoir on the Occultation of Aldebaran by the moon on the 21 st af October 1793. By Jose Joaquin de Ferrer.

Read November 16th $1804{ }^{\circ}$

OBSERVATIONS ON THIS OCCULTATION.

According to the statement of Mr. Lalande in the Connoissance des Temps for the year 8, Triesnecker has, contrary to the opinion of this astronomer, diminished the horizontal parallax of the moon given, in the third Edition of his Astronomy, $6^{\prime \prime}$; but this variation cannot produce so great a difference. As the position of Porto-Rico is very interesting to geographers, I have proposed to calculate all the observations, to examine the elements, and point out the dependence to be placed on these results.

I had formerly calculated these observations, supposing the proportion between the polar and equatorial diameters of the earth to be as $249: 230$ conformably to the theory of Newton, and the horizontal parallax in Paris $=57^{\prime} 44^{\prime \prime} 8$. Since that period this proportion has been ascertained to be as $333: 334$. The constant parallax of the equator $57^{\prime} 1^{\prime \prime}$, from which the parallax at Paris $=57^{\prime} 36^{\prime \prime} 8$. for the moment of the con-
junction.-It follows then from the first elements that the iongitude of Porto-Rico West of Paris $=4^{\prime \prime} 33^{\prime} 26^{\prime \prime} 6$, and the difference of latitudes in conjunction $22^{\prime} 58^{\prime \prime}$. -It is to be remarked that calculating from the different elements, there resulted an increase in the difference of meridians between PortoRico and Paris viz:

	b "
From the difference between 1-230 and 1-334 for the figure of the earth.	+083
From the differences of parallaxes between 57' 44' 8 , and $57^{\prime \prime} 36{ }^{\prime \prime} 8$.	$+171$
Longitude of Porto-Rico by the first elements	433266
Longitude of Porto-Rico West of Paris corrected.	433520

These results inclined me, at the moment, to believe that the longitude determined by Triesnecker was nearer the truth than any of the others, I immediately began a careful investigation, making use of the best elements astronomy has as yet afforded.

In consideration of the great influence of the parallax and oblate figure of the earth, upon the longitude of Porto-Rico, we may infer the great importance of repeating this kind of observations, for if we can once with accuracy determine the difference of meridians, we can then determine the proportion of the earth's axes, with more certainty than by the Geodesical method; or supposing this proportion known, the lunar parallax could then be determined.

The parallax which I have adopted is that of Burg, who deduced it from observations of a great number of solar eclipses and occultations of stars.

The inflection of the moon I have deduced from the same observations. It will not be amiss to observe, that comparing the conjunctions deduced from immersions and emersions, or immersions with immersions, they give the difference of meridians, so that the doubt which may exist as to the quantity of inflection, cannot be such as to affect the result. To determine the difference of latitudes at the conjunction, I have made use of the observations at Gotha and Porto-Rico.

It is to be remarked that at Porto-Rico the apparent center of the \boldsymbol{I} Immer. moon passed to the North of Aldebaran supposing $2^{\prime \prime}$ of inflection. $\}$ Emer.		135638
		154918
At Gotha to the South of Aldebaran.	2 Immer.	105535 122035
Difference of Latitude at conjunctio with $2^{\prime \prime}$ inflection.	$\begin{aligned} & \text { Porto-Rico. }=22^{\prime} 55^{\prime \prime} 9 \\ & \text { Gotha } \quad 22587 \end{aligned}$	2257
Supposing $1^{\prime \prime}$ of inflection	$\left\{\begin{array}{lllll} \text { Porto-Rico. } & 22 & 57 & 0 \end{array}\right\}$	2257

It appears therefore that the center of the moon having passed at such a distance from Aldebaran and in different quarters, the errors proceeding from the semidiameter of the moon, or quantities of inflections, have contrary signs, that is if we suppose $1^{\prime \prime}$ more in the inflection, we diminish the difference of latitudes at conjunction by the observations in Porto-Rico $\mathbf{1}^{\prime \prime} 1$ and augment it by those of Gotha $1^{\prime \prime} 6$, consequently we determine at the same time both elements, which is reduced to the following question: To find the horizontal semidiameter of the moon at the moment of the conjunction; by applying the corrections of the horary variations and the corresponding increase of altitude, there results the same difference of latitude at conjunction, by the observations at both places. By applying the calculation we find the inflection of the horizontal semidiameter of the moon $=1^{\prime \prime} 0$, and the difference of latitudes $22^{\prime} 57^{\prime \prime}$ O. At Figueras and Ferrol the apparent centers of the

These observations after having determined the difference of latitudes at conjunction, are the most proper to determine the quantity of inflection.

By applying the calculation to the observations of Ferrol, there results the inflection of the semidiameter of the moon.

	$0^{\prime \prime} 9$
Applied to the observations of Figueras.	05
To those of Porto-Rico and Gotha.	10
Mean inflection.	0

According to Lalande, the inflection increases the semidiameter of the moon $2^{\prime \prime}$; Mr. Du Sejour, after having calculated the observations of Mr Short on the Solar eclipse of 1st April

1764, says that an inflection of $1^{\prime \prime} 8$ and a diminution of the semidiameter of the moon of $1^{\prime \prime} 5$ agreed with some of the observations, but he could come to no final conclusion upon this point. To determine the quantity of the inflection it is necessary to know precisely the following data, viz. the precise diameter of the moon, the beginning and end of the occultation, the true difference of latitude, the parallaxes in longitude and latitude, and the horary motions of the two bodies.

Let us suppose the diameter observed to be less than that calculated by the tables $0^{\prime \prime} 8$, as in the present case, and that in other respects the elements that have been made use of are correct, we cannot on that account suppose it to be the effect of the irradiation, it being certain that the doubt respecting the lunar diameter, measured by different astronomers, is much greater than the above difference.

The diameter of the sun has been frequently the object of the attention of astronomers, and although it is much more easily determined than that of the moon, there is notwithstanding, a great difference in the various determinations.

If we confine ourselves even to the determination of Lalande, Maskelyne, Bradley, and Short we find a difference from $2^{\prime \prime}$ to $3^{\prime \prime}$ and there is reason to believe that the uncertainty of the diameter of the moon is much greater, consequently we may well doubt whether the diminution of $1^{\prime \prime}$ or $\mathscr{Q}^{\prime \prime}$ resulting from the observations of the moon by eclipses of the sun and occultations, is the effect of the irradiation or of an error in the diameter represented in tables.

Remark on the elements of the tables.

I have calculated the place of Aldebaran taking the right ascension from the catalogue of Maskelyne and the declination
of Piazzi; and the place of the moon from the theory of Laplace. The horizontal parallax of the moon, from the statements of the tables of Lalande, in the third edition of his astronomy, I have diminished $3^{\prime \prime} 1$, conformably to the determination of Burg as mentioned above.

I have also taken care to calculate the horary motions corresponding to the intervals between the immersions and emersions, and between the true conjunction and the moments of the immersions and emersions, the variation of the parallax, semidiameter, equation of time and all the other elements, which are subject to variation.

Elements of the

Occultation of Aldebaran by the moon.

October 21st, 1793.

Application of the calculation of the observation at Gotha.

Sine horizontal polar parallax.	8,2234038		8,2232030
Logarithmic radius at Gotha. $\}$	0,0005193		0,0005193
Logarithmic radius at the Pole. Co-arithmetical cosine latitude of the moon.	0,0017209	$\cdots \cdot$	0,0017200
Sine altitude of the nonagesime.	9,9214490		9,9081105
Sine ($\mathrm{N}+$ parallax in longitude)	9,9334117		9,9601182
$\mathrm{P}=$ Sine parallax in long. $=41^{\circ} 22^{\circ} 79=$	=8,0805047	Sine P. $=42^{\prime} 39^{\prime \prime} 22$	8,0936710
Cosine latitude of the moon.	9,9982791	9,9982800
Coarar sine N .	0,0697644	- . . -	0,0423423
Constant logarithm.	8,1485482		8,1542933
Cotangent H.	9,8196570		9,8608182
Cosine latitude apparent of the moon $5^{\circ} 39^{\prime} 50^{\prime \prime}$	9,9978740	$5^{\circ} 4117$	9,9978563
Sine $\mathrm{Q}=31^{\prime} 47^{\prime \prime} 71$.	7,9660792	Sine $\mathrm{Q}=33^{\prime \prime} 49^{\prime \prime} 55$	7,9929678
Constant logarithm.	8,1485482		8,1342933
Cosine ($\mathrm{N}+\frac{1}{2} \mathrm{P}$.)	9,7152204	$\cdots \quad$.	9,6183552
Cosine apparent latitude of the moon.	9,9978740	.	9,9978563
Tangent the true latitude of the moon.	8,9505967	- . - .	8,9504777
Sine $Q^{\prime}=2^{\prime} 13^{\prime \prime} 86$.	6,8122393	Sine $Q^{\prime} .1^{\prime \prime} 43^{\prime \prime} 61$.	$6,7009825$

Apparent inclination of the orbit $3^{\circ} 48^{\circ} 51 \quad$ arc orchord 1277" 76

Apparent semidiameter-2" inflection=	$\left\{\begin{array}{llllll}\text { I. } & 15^{\prime} & 48^{\prime \prime} & 38 \\ \text { E. } & 15 & 46 & 33\end{array}\right.$
	\{I. $46^{\circ} 17^{\prime} 18^{\prime \prime}$
conjunction.	2. $38 \quad 3126$

True conjunction in apparent time $=18 \mathrm{~h} 40^{\prime} 06^{\prime \prime} 1$

(a) Apparent latitude of the 8 by the tables $\begin{array}{lllllllll}5 & 39 & 52 & 37 & & 51 & 41 & 17 & 36\end{array}$

Difference of latitudes observed. $\quad-10 \quad 55 \quad 35$
Lat. of the \gtrdot in the region of the star.
Latitude of Aldebaran.

| 5 | 28 | 57 | 02 |
| ---: | ---: | ---: | ---: | ---: |
| 5 | 28 | 49 | 00 |
| -0 | 00 | 08 | 02 |

-12	20	35

5	28	57	01
5	28	49	00
0	00	08	01

Occultation of Aldebaran by t

Observed in the Capital of Porto-Rico and different pla

Apparent times observed.
Long. from Paris (national observy.)
Apparent times in Paris.
Equation of time.
Latitude_-Vertical angle.
Logarithm of the earth's radius.
The sun's right ascension.
Moon's longitude by the tables.
Moon's latitude.
Moon's polar horizontal parallax.
Moon's horizontal semidiameter.
Altitude of nonagesime.
Moon's true distance from the nonag.
Parallax in longitude.
Parallax in latitude.
Apparent semidiameter-1" inflection
Conjunction, apparent time.
True diff. of lat. at conjunction.
Conjunct. by the immersion's?
Allowing $22^{\prime} 57^{\prime \prime}$ difference $\}$ inflect.
of latitude at conjunction and inflect.

GOTHA.

Immersion.	Emersion.
h 111	h
$193309 \quad 1$	$201320 \quad 7$
-33 355	
$18 \quad 59336$	$193945 \quad 2$
- 152728	152755
$50^{\circ} 4749$	
9,9992171	
13\%49 041	$134910 \quad 4$
$67^{\circ} 242780$	67470525
5055080	5054420
573030	572870
154444	154402
563406	540140
582311	650630
412779	423922
340157	353316
154938	154733
18 h 40061	1840061
22571	
$\begin{aligned} & =1^{\prime \prime}=18^{\mathrm{h}} 40^{\prime} 05^{\prime \prime} \\ & =2^{\prime \prime}=18,40 \\ & =103 \end{aligned}$	

PARIS MARINE OBSERVATORY

Immersion.	Emersion.
h 11	h ' $"$
$185328 \quad 0$	194536
18	
$18 \quad 5326 \quad 2$	$194534 \quad 2$
152727	152756
484051	
9,9992649	
1349025	$134911 \quad 4$
67210110	6750220
505517	505431
57304	57283
154452	154399
604150	574616
521120	610818
401124	430573
310207	324943
155113	154849
$18 \quad 0638 \quad 7$	$180638 \quad 7$
23004	

FIGUERAS.
181. $06^{\prime} 33^{\prime \prime} 0$
$18 \quad 0630 \quad 8$

$\left|\right.$| Immersion. | | | |
| :---: | :---: | :---: | :---: |
| h | $\prime \prime$ | $\prime \prime$ | |
| 18 | 59 | 27 | 7 |
| -18 | 2 | 29 | 5 |
| 18 | 56 | 58 | 2 |
| 15 | 27 | 26 | |
| 42 | 05 | 44 | |
| 9,9994141 | | | |
| 13 | 49 | 03 | 7 |
| 67 | 23 | 00 | 8 |
| 5 | 05 | 50 | 90 |
| 57 | 30 | 4 | |
| 15 | 44 | 48 | |
| 66 | 40 | 57 | |
| 55 | 26 | 32 | |
| 44 | 07 | 12 | |
| 25 | 33 | 25 | |
| 15 | 50 | 90 | |
| 18 | 09 | 05 | |
| 22 | 57 | 99 | |$|$

Emersion.	Immersion
h $1 / \%$	h
$20 \quad 0017 \quad 6$	180340
	+ 4213
1957481	184553
152759	1527
	$431912 \frac{1}{2}$
	9,9993861
$134913 \quad 2$	134902
$67 \quad 57154$	671645
5054086	50552
57280	5730
154387	1544
625328	680230
663835	442748
473022	3759
280270	2505
154738	1553
180905	172421
	2257
$9^{\prime} 05^{\prime \prime}$	17 h
903	17

Latitude of Gotha.
Paris marine observatory. Figueras. Ferrol.
Porto-Rico. Berlin.
Marseilles.
Dantzick.
o , "
505746
485104
421600
432930
182845
523130
431749
542105

Mean conjunction by the immersion and emersion at Paris.
Conjunction observed in Gotha-diff. long. =true conjunction in Paris. Do. do. in Paris- diff. long. =
Do. do. in Figueras.
Mean conjunction, apparent time in the national observatory of Paris Difference of latitude at conjunction. $\left\{\begin{array}{lll}\text { Gotha. } & 22 & 57 \\ \text { Paris. } & 23 & 00 \\ \text { Figueras. } & 22 & 57 \\ \text { Ferrol. } & 22 & 57 \\ \text { Porto-Rico. } & 22 & 57 \\ . & 22 & 58\end{array}\right.$

n of Aldebaran by the Moon,

ico and different places of Europe: October 21st, 1793.

junction by the immersion and emersion at Paris.-
1 in Gotha-diff. long.=true conjunction in Paris. $=1806306$ in Paris- diff. long. $=\quad$. \quad do. $180636 \quad 9$ in Figueras.
pparent time in the national observatory of Paris $\quad 180634 \quad 3$
e of latitude at conjunction. $\left\{\begin{array}{llll}\text { Gotha. } & 22 & 57 & 10 \\ \text { Paris. } & 23 & 00 & 40 \\ \text { Figueras. } & 22 & 57 & 99 \\ \text { Ferrol. } & 22 & 57 & 70 \\ \text { Porto-Rico. } & 22 & 57 & 00\end{array}\right.$

Mean.
22580

Conjunction by the immersion's allowing $22^{\prime} 57^{\prime \prime}$ difference of latitude at
conjunction and

inflection $2^{\prime \prime}$

| \mathbf{h} | \prime | $\prime \prime$ | |
| :---: | :---: | :---: | :---: | :---: |
| 18 | 06 | 27 | 6 |
| 18 | 06 | 29 | |
| 18 | 06 | 33 | 5 |
| 18 | 06 | 30 | 4 |
| 18 | 06 | 31 | 4 |
| 18 | 06 | 26 | 1 |
| 18 | 06 | 29 | 7 |

Note. The altitudes and longitudes of the nonagesime have been calculated with the latitude diminished by the vertical angle corresponding to $333: 334$, for the proportion of the axes: I have omitted the forms which I made use of, and have only given the calculation of the parallaxes to shew the method I have used, which is the same with that of Cagnoli.-See his treatise of trigonometry, printed in Paris, page 411-427.

Determination of the difference of latitudes at the conjunction.

It will appear by the annexed table of the occultation, as observed in the capital of Porto-Rico and different places in Europe, that the mean difference of latitudes at conjunction, (supposing $\mathrm{l}^{\prime \prime}$ of inflection) is $22^{\prime} 58^{\prime \prime} 00$.

The emersion at Paris was observed rather late, as appears by a comparison of the observations, and consequently cannot be much confided in; the observations at Figueras and Ferrol are not the most proper in order to determine the latitudes at conjunction, because the center of the moon passed near to the star, we shall therefore confine ourselves to those of Gotha and Porto-Rico, which give $22^{\prime} 57^{\prime \prime} 0$ without risk of an error of $1^{\prime \prime}$.

If we diminish the horizontal polar parallax of the © by $4^{\prime \prime}$ according to the theory of Laplace, there would have resulted a difference of latitudes at conjunction by the observations at Porto-Rico and Gotha $=22^{\prime} 56^{\prime \prime}$.

Determination of the longitude of Porto-Rico veest of Paris.

Conjunctions at Paris resulting from three suppositions.

1. By the immersions and emcrsions at Paris, Gotha and Figueras, reduced to the national observatory.
2. Supposing $22^{\prime} 57^{\prime \prime}$ difference of latitude at the conjunction, and making use of the immersions with $\mathrm{l}^{\prime \prime}$ of inflection.
3. Making use of the same difference of latitude at the conjunction with $2^{\prime \prime}$ inflection.

Conjunction at Paris by observations.

	b ' "	b 1	\cdots, *
At Gotha.	1806306	1806300	180627.6
Paris.	1806369	1806313	1806290
Figueras.	1806355	1806355	1806333
Berlin.	1806335	1806304
Marseilles		1806332	1806314
Dantzick.	. . - .	1806320	1806261
Conjunction on three hypotheses.	1806343	1806325	1806297
Same at Yorto-Rico.	1332418	1332413	1332377
Longitude of Porto-Rico on $\}$ the three hypotheses.	433525	433512	433520
Mean longitude of Porto-R			519

If we stippose the proportion of the difference of the earth axes 1-300, it diminishes the difference of meridians between Porto-Rico and Paris. $-2^{\prime \prime} 65$
$1^{\prime \prime}$ diminution of the parallax, + 214
$1^{\prime \prime}$ more in the horary motion of longitude. + 370

If we suppose the polar horizontal parallax diminished $4^{\prime \prime}$, conformably to Laplace's theory, it would increase the longitude of Porto-Rico by $8^{\prime \prime} 5$ of time: in this case the longitude of Porto-Rico would be $\left(=4^{\mathrm{h}} 33^{\prime} 51^{\prime \prime} \quad 2+8^{\prime \prime} 5\right)=4^{\text {n }} 33^{\prime} 59^{\prime \prime} 7$ According to Triesnecker. 433586

The variations in the elements, have no sensible influence on the difference of meridians between the observations in Europe.-So that we may consider the above results to have as much accuracy as the observations can possibly be susceptible of.

No. XXXVII.

The geographical position of sundry places in North America and in the West Indies, calculated from astronomical observations: By Jose Joaquin de Ferrer.

Read at sundry times, 1805.

OCCULTATION OF JUPITER BY THE MOON.

January 15th, 1799.

Observations.	-	Apparent time:
At New-Orleans	$\}$ Immersion of the center of Jupiter.	545465
by Mr. Andrew Ellicotr.	$\}$ Emersion of the center.	706200
At the royal observatory of the Island of Leon by Don	Immersion of the 1 st limb.	1329438
At the national observatory a Paris by Mr. Mechain.	Immersion of the center.	- 1350125

Elements by the tables at $13 \mathrm{~h} 00^{\prime} 00^{\prime \prime}$ mean time or $12 \mathrm{~h} 49^{\circ} 50^{\prime \prime} 1$ apparent time at Paris.

Proportion of the equatorial and polar diameters of the earth 334 : 333.

